Tag Archives: bonding

  • Plastics manufacturers are all too familiar with the challenges of bonding thermoplastics. Last week, BTG Labs successfully hosted a webinar with Plastics Technology to discuss improving bonding of thermoplastics. The webinar, entitled “Understanding Surface Energy: How to Measure and Control the Surface Properties of Thermoplastics to Maximize Adhesion,” brought in almost 400 registrants.

    Presented by BTG Labs’ Chief Scientist Dr. Giles Dillingham who discussed the surface characteristics of thermoplastics. Dr. Dillingham also explored surface treatment processes such as flame, corona, and plasma, and ways to monitor and verify those processes. The ability to understand and measure the surface precisely is the key to successfully bonding thermoplastics.

    This table shows the relationship between low surface energy and relative interfacial toughness. While thermoplastics are highly durable, they cause difficulties in bonding because of their low surface energy.

    …Read More

    • Likes
    • Comments 0
  • There’s nothing like arriving at the course on a fresh spring morning. The sun is low, casting long shadows across the green mounds, foggy rays bring hints of warmth, a fresh, dewy smell fills the air, and everything is the most vivid green of the year.

    It’s time to get out the bag, polish the clubs, and maybe replace the grips. The courses are meticulously manicured. The weather is warming. It’s spring and we’re in the midst of golf season.

    Whether it’s a tournament or a casual round with a buddy, relying on your equipment is reflexive. Although, mishaps do occur—grips slip, shafts bend, and balls lose their print—top  golf manufacturers use the Surface Analyst to produce a reliable product that will hold up all season long. …Read More

    • Likes
    • Comments 0
  • Roosevelt University, Image by Chicago Tribune

    Roosevelt University, a liberal arts college in the Loop of downtown Chicago perfectly contrasts antiquated and contemporary architecture. Roosevelt’s first venue, constructed in 1889 just in time for the World Fair, is 17 floors of beautiful Art Nouveau structure. The Auditorium Building encompasses ornate railings and scaffolding, topping off with a regal library and a lofty tower overlooking Grant Park. However, because of its age, the Auditorium Building demands constant attention and is inefficient in the frigid Chicago winters and hazy summers.

    Their new building, the Wabash Building, erected in 2012 is just the opposite. Its 32 towering floors of curved glass superintends the Auditorium Building, arriving amongst the structural giants of Chicago. Illustrating the epitome of modern design, this highly efficient, state of the art structure is LEED certified.

    When looking up at the two buildings, old charm vs new-age sleek, the phrase comes to mind: they just don’t make things like they used to. But, there’s necessity behind this. As the global population rises, infrastructure becomes denser, and resources become scarce, engineers concentrate on building smarter. Designing a building that spares no expense—in terms of efficiency in operation and manufacturing of these smarter materials—is pivotal. This all begins in the research and development lab and extends to the manufacturing floor. Materials and processes are developed to allow for more efficiency in both the production of materials and the final construction. Guaranteeing bonds will hold; paint, print, and coatings will stick; seals will persevere; and cleaning processes will clean effectively is crucial to manufacturing a product that will withstand stresses of any structure.

    That is why more and more manufacturers are turning to the Surface Analyst™. This hand-held instrument ensures any surface is ready for effective bonding, coating, cleaning, sealing, printing, or painting. The ability to verify and quantify critical surface processes on the manufacturing floor is the keystone to efficient manufacturing and smarter structures.

    A high-grade window manufacturer, for example, uses the Surface Analyst to verify plasma treatment on vinyl window frames prior to sealing. This guarantees the windows will efficiently heat or cool a structure while also withstanding the elements of rain, wind, and snow. …Read More

    • Likes
    • Comments 0
  • A Beer with Giles Dillingham

    by Emily Walsh April 2017

    In 1987, Giles earned his PhD and moved to Midland, Michigan to begin laboratory work at Dow Chemical.

    The office of Giles Dillingham is unique, eclectic, and full of resources; very much like Giles Dillingham. The corner office is filled with books, antique tools, paintings by his beloved wife, family photos, and of course, a very nice stereo set-up.

    Giles, BTG Labs’ Founder and Chief Scientist, can often be found typing eagerly away at a report while listening to classical music, or seated at the Cherrywood table, collaborating with colleagues.

    One Friday evening, as the Cincinnati sun began to sink, I shared an end of the week beer with Giles in his lovely office to hear the origin story of BTG.

    Emily: So, Giles, you started BTG Labs. Where did it begin?

    Giles: Well, after I finished my PhD at the University of Cincinnati, I had a job waiting for me at Dow Chemical up in Midland, Michigan. And, I worked there for five years in a variety of assignments, mostly in polymer processing and surface properties. Central Research at Dow in the 90’s was an amazing place to work.  It was a very academic environment with amazing scientists from all fields. I spent most of my time in the laboratory. I learned and grew a whole lot.

    E: And, then what? …Read More

    • Likes
    • Comments 0
  • Image by Cincinnati Reds via Cincinnati Business Courier 

    It’s Opening Day in Cincinnati, Ohio! Now this isn’t just any season opener, Opening Day in Cincinnati is an unofficial city holiday. Downtown is painted red as people gather for the 98th Opening Day Parade and celebrations around town. Offices slow down and desks are empty in schools. Today, Cincinnatians are gearing up for the hometown Reds’ game against the Phillies. We don our red, grab our game day snacks, and pray for fair weather.

     

    Buy me some peanuts and cracker jacks

    …Read More

    • Likes
    • Comments 0
  • Surface Analyst Inspection on Engine Casing

    Manufacturers working with metal are all too familiar with the obstacles that come along with coating, painting, bonding, printing, or sealing it. While the uses of metal in manufacturing are countless and exist in numerous industries, the common denominator is ensuring the appropriate surface cleanliness prior to surface critical processes to guarantee successful adhesion. Common surface cleanliness gauges—dyne inks and water break—are subjective and do not offer quantitative results. Water break can be messy and time consuming and dyne is destructive to the part and dangerous to the user. While these methods can offer some insight into surface cleanliness, they are less than ideal.

    BTG Labs Surface Analyst is a fast, easy, accurate, and non-destructive surface cleanliness gauge that tells the user right on the manufacturing floor how prepared the surface is to bond. This hand-held instrument improves surface processes and guarantees a bond will stick. Numerous manufacturers in industries such as consumer goods, automotive, and aerospace, have implemented the Surface Analyst in their specifications to improve their critical metal surface processes. …Read More

    • Likes
    • Comments 0
  • Surface Analyst inspection points on an automotive oil pan.

    BTG Labs’ Chief Scientist Dr. Giles Dillingham recently presented at the 40th annual meeting of the Adhesion Society. An elected Fellow of the Adhesion Society, Dr. Dillingham has been contributing to this community since 1980.

    Giles’ presentation, “Control of Cleaning Processes to Maximize Sealant Performance,” focuses on quantifying parts washers and sealant processes. The importance of monitoring cleaning processes in preparation for sealing is becoming increasingly important in the automotive industry, as sealant processes such as such as FIPG (formed in-place gaskets) are replacing traditional fasteners. However, when sealing, the surface must be clean and clear of contaminants in order to guarantee the bond.

    As FIPG relies on properly made bonds, contaminants preventing the success of those bonds must be monitored and properly expelled. There is a wide range of assembly liquids that can interfere with the bond of FIPGs–cutting fluids, die lubes, corrosion inhibitors, as well as particulates generated from casting and machining. This paper shows the importance of quantifying parts washers in order to ensure the part is properly prepared to bond. An engine casing was cleaned in two different parts washers. After each wash, Surface Analyst measurements were taken across the engine casing. Figures within the paper show different measurements and the inconsistency throughout the casing from just one parts washer. Some areas showed low contact angle (indicating a successful wash) while others showed high contact angle (indicating an improper wash). …Read More

    • Likes
    • Comments 0
  • Medical Device Applications

    by Emily Walsh February 2017

    BTG Labs’ origins are in the research and development of adhesives and coatings, including the development of a corrosion resistant antimicrobial coating–often used in the medical device industry. The Surface Analyst is the ideal surface cleanliness gauge for the medical device industry in that it is completely non-destructive, precise, quantitative, and able to measure on various substrates including rough, convex, and concave surfaces. BTG Labs’ twenty plus years of expertise can assist in the optimization of medical device manufacturing processes to meet the highly-tailored specs of this industry to manufacture more reliable, fail resistant products.

    Monitor

    • Layers of silicone wafers prior to bonding
    • Sanding and solvent wiping on carbon fiber and titanium for prosthetics
    • And identify the presence of detrimental silicone in a bonding step
    • Flame treatment on medical devices including catheters
    • Plasma treatment on catheters prior to bonding luers
    • Surfaces preparations prior to solvent bonding

    Validate

    • Microbial lubricious coating and uniformity on catheters
    • Surface cleanliness of stainless, aluminum, titanium, and polymer devices
    • Sterilization methods such as ultra-sonic baths and vacuum plasma chambers
    • Audit concerns with shelf-life and uniformity of antimicrobial coatings …Read More
    • Likes
    • Comments 0
  • BTG Labs at AeroDef 2017

    by Emily Walsh February 2017

    AeroDef Manufacturing 2017  is the pivotal event for world leaders of the aerospace and defense manufacturing industry. BTG Labs is excited to exhibit, speak, and teach a course at the conference held March 6-9 at the Fort Worth Convention Center in Fort Worth, Texas. BTG Labs Chief Scientist Dr. Giles Dillingham will present on his paper “Understanding and Controlling the Bond Surface in Manufacturing for Reliable Adhesive Bonding of Composites.” This presentation delves into the challenges and logistics of adhering to composites and how to create the desired bond surface. Furthermore, Dr. Dillingham will discuss common industry practices in surface preparation and surface verification.

    Dr. Dillingham will also teach a 3-hour workshop during the conference with Louis Dorworth of Abaris. Their course entitled, “Fundamentals of Adhesive Bonding of Composite Materials” focuses on basic bonding requirements of composites, goals of surface preparation, things to avoid when preparing composite surfaces, and varying surface preparation methods. BTG Labs will also share a booth with Abaris. At booth 705 BTG Labs will demonstrate the Surface Analyst™, the hand-held water contact angle measurement device that determines a surface’s readiness to bond.

    Register here for this exciting event in the aerospace and defense manufacturing industry.

    • Likes
    • Comments 0
  •  aircraft assembly

    Aerospace Applications

    The aerospace industry knows it must meet high specs to create an aircraft that is safe, reliable, and resilient. As aluminum and titanium materials are more often replaced with stronger, lightweight composites, which require adhesive bonds, knowing that bond will stick is pivotal. The strength and success of that adhesive bond depends on properly preparing the composite surface.

    BTG Labs boasts a long-term relationship with the aerospace industry. When the need to create reliable adhesive bonds, BTG Labs received an SBIR (Small Business Innovation Research) to collaborate with the USAF. This led to the development of the Surface Analyst™. Using water contact angle measurements–a proven way to predict adhesion in aircrafts–the Surface Analyst is the first hand held surface energy measurement device to accurately and precisely measure surface energy in the aerospace industry. The Surface Analyst also played a major role in the development of the F-35 Joint Strike Fighter. BTG Labs continues to contribute to the aerospace industry as more applications arise. In two seconds, the Surface Analyst determines a surface’s readiness to bond successfully in a fast, easy, accurate, non-destructive, and quantifiable way.

    …Read More

    • Likes
    • Comments 0