Category Archives: Automotive

  • Water break testing. Dyne pens. Goniometer. No method at all.

    The search for a reliable, repeatable, objective method (i.e. not based on opinion) for measuring surface readiness in manufacturing was a search all too common among our current customers, and these methods are the most commonly tried and (formerly) used among them.

    Achieving great adhesion in manufacturing comes down to surface preparation (we call it “Clean to a Number”) and optimal surface prep is the difference between an average product…and an industry-leading one.

    But getting there means having an objectively quantified understanding of the top 3 molecular layers of your material surface.

    Did we just say “top 3 molecular layers?”

    …Read More

  •  

    Real-time data.

    New industry buzzword?

    Or a new generation of process and quality control?

    …Read More

  • Watch BTG Labs’ latest video and learn how to gain total surface quality control with the push of a button. This video offers a way to better understand and optimize control of critical surface processes, ultimately giving manufacturers the ability to engineer a stronger product.

    The video features Lead Sales Engineer Lucas Dillingham demonstrating the Surface Analyst’s fast, easy, accurate and non-destructive surface cleanliness measurements that can be taken in real-time, on the factory floor.

    In seconds, the Surface Analyst reveals how ready a surface is prior to processing. Watch Lucas take multiple measurements across the surface of an engine casing post surface preparation. The water contact angle measurements, which directly correlate with surface cleanliness, show the level of cleanliness achieved by the surface preparation. The Surface Analyst reveals not only surface preparation success, but also uniformity of the treatment.

    …Read More

  • The competitive nature of the automotive industry requires manufacturers to engineer the ideal product; failures, no matter how small, are unacceptable and can bring heavy consequences.

    A particular problem that plagues automobiles is condensation collecting on the inside of headlights. High performance automotives must not only perform well mechanically but must also maintain an exceptional aesthetic. Water droplets condensing on the insides of headlights are unappealing and unacceptable to consumers.

    In order to prevent that condensation, manufacturers use an invisible coating on the inside of polycarbonate headlight lenses called anti-fog.

    This coating is applied via spray application which can be difficult and inconsistent due to several variables: low energy mold releases left on the surface; environmental contaminants; contaminants from handling; uneven spray application; and incorrect coating solutions.

    …Read More

  • Performing any kind of inspection on small parts can be difficult. When measuring for surface cleanliness, accessing small parts can be even more challenging, especially when measuring on the factory floor.

    With the Surface Analyst, measuring surface cleanliness on small parts has never been easier. This handheld instrument is fast, easy, accurate, and non-subjective allowing for precise measurements, right on the factory floor.

    With specialized measurement heads and a tether to allow access to small parts, manufacturers can verify surface readiness to bond, paint, clean, coat, print, or seal. The Surface Analyst optimizes manufacturing, repairs, and maintenance. …Read More

  • Parts washers play an integral role in manufacturing, especially on machined parts and bonding surfaces. Prior to coating, sealing, painting, and welding, parts washers help remove contaminants generated from fabrication to facilitate stronger bonds.

    But, for a reliable bond to form, the surface must not only be free of particles, it must also be chemically clean. Thus, quantifying and analyzing parts washer effectiveness in removing chemicals is the key to ensuring the desired surface is achieved.

    The importance of monitoring cleaning processes in preparation for bonding is becoming increasingly necessary as sealing processes are rapidly replacing traditional mechanical fasteners and gaskets.

    However, when sealing, the surface must be clean and clear of contaminants to guarantee the bond. The Surface Analyst monitors and optimizes washer systems to ensure the part comes out chemically clean and ready to hold a reliable bond. …Read More

  • BTG Lab’s recently held another successful webinar. Hosted by Products Finishing and presented by Dr. Giles Dillingham, the webinar emphasized the importance of monitoring cleaning processes and explored different ways to measure surface cleanliness.

    In the webinar, Dr. Dillingham discusses measuring surface cleanliness as a way to quantify cleaning processes. By measuring the success of cleaning processes, manufacturers can determine the ideal solution for their application.

    Precisely evaluating cleaning processes with water contact angle is a fast, easy, accurate, quantitative to way to gain ensure consistency and precision on the factory floor.

    …Read More

  • Challenges often arise when verifying critical surface processes on the factory floor when measuring hard to reach areas and varying angles. The Surface Analyst conquers those challenges with the unique ability to measure on vertical surfaces, which include assembled parts and hard to reach spots. This allows for easier surface analysis on the factory floor.

    This ability is possible because of patented Ballistic Deposition which deposits a pulsed stream of micro droplets with enough kinetic energy to overcome surface roughness and textures.

    A few examples of the Surface Analyst’s ability to measure on vertical surfaces on the factory floor:

    • Airplane wings prior to bonding, painting, and repair
    • Canopy of jet fighters after cleaning
    • Wind turbine blades prior to bonded repair
    • Silkscreen bottles post flame treatment
    • Ship hulls prior to painting and bonding
    • Interior of automobile headlights prior to application of anti-fog coating
    • Windshield bond lines prior to sealing
    • Class A paint surface for decals applications and reapplications
    • Measuring appliances after metal cleaning and prior to power coating

    …Read More

  • Thanks to advancements in powertrain manufacturing, sealing processes have improved assembly efficiency. Formed-in-place gaskets (FIPG) are replacing traditional mechanical fasteners as they are more cost effective, stronger, and easier to apply. However, adhesive bonding rather than mechanically fastening presents different challenges and requires new protocols.

    Lead Sales Engineer Lucas Dillingham has presented “Defining Cleanliness in Powertrain Manufacturing for FIPG Applications,” at several events and automotive factories. BTG Labs works with numerous automotive manufacturers on surface chemical cleanliness and what it means for assembly.

    Traditional millipore tests reveal particulate contamination, but on a sealing surface, one must detect chemical contamination. To adhere successfully, surface cleanliness on a chemical level is vital.

    A byproduct of automotive manufacturing processes is contaminants that are detrimental to adhesion. Processes entailing unwanted contaminants include:

    • Die-casting
    • Machining
    • Washing
    • Assembly

    …Read More

  • Plastics manufacturers are all too familiar with the challenges of bonding thermoplastics. Last week, BTG Labs successfully hosted a webinar with Plastics Technology to discuss improving bonding of thermoplastics. The webinar, entitled “Understanding Surface Energy: How to Measure and Control the Surface Properties of Thermoplastics to Maximize Adhesion,” brought in almost 400 registrants.

    Presented byBTG Labs’ Chief Scientist Dr. Giles Dillingham who discussed the surface characteristics of thermoplastics. Dr. Dillingham also explored surface treatment processes such as flame, corona, and plasma, and ways to monitor and verify those processes. The ability to understand and measure the surface precisely is the key to successfully bonding thermoplastics.

    This table shows the relationship between low surface energy and relative interfacial toughness. While thermoplastics are highly durable, they cause difficulties in bonding because of their low surface energy.

    …Read More