Tag Archives: BTG Labs

  • Every plastics manufacturer knows that bonding low energy thermoplastics can be challenging. In the upcoming webinar hosted by Plastics Technology, BTG Labs’ Chief Scientist Dr. Giles Dillingham will discuss practical ways to improve bonding of thermoplastics more reliably and efficiently.

    Dr. Dillingham will discuss the nature of thermoplastic surfaces and how the manipulation of various surface treatment processes—flame, corona, and plasma—make or break a surface. The webinar will discuss how the Surface Analyst uses water contact angle measurements to lend imperative insight into surface energy and in turn, hone in on the necessary treatment level for a higher quality, more consistent manufacturing process. After all, the most expensive surface treatment is nothing without an in-place monitoring process. …Read More

    • Likes
    • Comments 0
  • New Paper Presented at ANTEC 2017

    by Emily Walsh May 2017

    Last week, BTG Labs exhibited and presented at ANTEC 2017. We were pleased to connect and exchange intelligence with leaders in the plastics industry.

    Our booth featured the Surface Analyst, which uses contact angle to measure surface cleanliness of a material. This monitors the surface preparation process and ensures readiness to bond, print, paint, coat, or seal which can be challenging on plastics. More and more, plastics manufacturers are turning to the Surface Analyst for guaranteeing their surface treatment and final product.

    Along with exhibiting, BTG Labs’ Chief Scientist Dr. Giles Dillingham presented the paper, “Rapid Evaluation of Surface Properties of Medical Tubing for Process Development and Quality Assurance.” The paper explains that the key to manufacturing high performance medical devices is understanding and controlling surface properties. Crucial characteristics of medical tubing such as wettability, adhesion, antithrombogenicity, and biocompatibility depend on only the top few molecular layers of a surface. Dr. Dillingham discusses research done with the Surface Analyst for highly sensitive surface measurements on medical tubing to control coating application. …Read More

    • Likes
    • Comments 0
  • How Clean is Clean Enough?

    by Emily Walsh May 2017

    Manufacturers often encounter a similar puzzle, when cleaning invisible contaminants from a surface, how do you know when the surface is clean; how clean is clean enough? This is a common question that manufacturers ask when preparing their surfaces for bonding, coating, sealing, printing or painting. Until now, there hasn’t been an objective and reliable way to answer this question. Successfully cleaning a surface directly correlates to the adhesive ability of the surface. In order to get something to stick reliably the surface must be clean. How we define that parameter is different for a variety of materials.

    For example, you clean your car differently than you clean your dishes. Why? Because a car rides on the road through rain, smog, dirt, maybe mud, and the other is a vehicle for your food.

    At BTG Labs, our answer to the “clean enough” question is, “Depends on what you’re doing.” There are dozens of critical surface preparation processes that exist for a number of different applications. A handful include:

    • Flame treatment on polypropylene bumpers prior to painting
    • Plasma treatment on PET catheters prior to coating
    • Hand sanding and solvent wiping on aircraft nut plates before adhesively bonding to composite
    • Grit-blasting titanium golf clubs in preparation of bonding to composite
    • Corona treatment on film for packaging prior to metallization, lamination, or coating

    …Read More

    • Likes
    • Comments 0
  • BTG Labs Presenting at AA&S 2017

    by Emily Walsh May 2017

    Top aerospace manufactures recruit state-of-the-art equipment to ensure precision and perfection. One thing the best of the best have in common: the Surface Analyst. BTG Labs first engineered the Surface Analyst through an SBIR (Small Business Innovation Research) grant to collaborate with the USAF (United States Air Force). Born out of necessity, the instrument was engineered to verify a surface’s readiness to adhesively bond fasteners.

    Today, the Surface Analyst is written into Lockheed Martin specifications for fighter jet manufacturing; it played a major role in the development of the F-35; and its expertise is trusted on all factory floors of top aerospace manufacturers.

    While the Surface Analyst use has spilled outside of the aerospace box, BTG Labs remains closely tied in the aerospace industry and that is why you will find us at AA&S 2017. Taking place May 22-25 in Phoenix, Arizona, The Aircraft Airworthiness and Sustainment Conference attracts leaders of the aerospace industry from around the world.

    …Read More

    • Likes
    • Comments 0
  • There’s nothing like arriving at the course on a fresh spring morning. The sun is low, casting long shadows across the green mounds, foggy rays bring hints of warmth, a fresh, dewy smell fills the air, and everything is the most vivid green of the year.

    It’s time to get out the bag, polish the clubs, and maybe replace the grips. The courses are meticulously manicured. The weather is warming. It’s spring and we’re in the midst of golf season.

    Whether it’s a tournament or a casual round with a buddy, relying on your equipment is reflexive. Although, mishaps do occur—grips slip, shafts bend, and balls lose their print—top  golf manufacturers use the Surface Analyst to produce a reliable product that will hold up all season long. …Read More

    • Likes
    • Comments 0
  • Visit booth 220 or attend the presentation of Chief Scientist, Dr. Giles Dillingham.

    What is known as The Plastics Technology Conference, ANTEC (Annual Technical Conference) 2017 brings together diverse members of the plastics industry from around the world. Taking place in Anaheim, California May 8-10, ANTEC 2017 showcases the latest technologies and advancements in the plastics industry.

    Dr. Dillingham’s presentation, “Rapid Evaluation of Surface Properties of Medical Tubing for Process Development and Quality Assurance” explores methods of quality assurance testing on sensitive medical tubing. Significant properties of medical tubing–adhesion, wettability, antithrombogenicity, biocompatibility—allow for the ability to deliver fluids, gases, drain, and enter the body effectively. Yet, these properties depend on the top 2-3 molecular layers of the tube’s surface. This is why precise control of the surface is crucial for the success of medical tubing. But, this can be challenging. Laboratory techniques such a FTIR and XPS can reveal surface composition, however, these methods are not practical on the manufacturing floor.

    …Read More

    • Likes
    • Comments 0
  • Roosevelt University, Image by Chicago Tribune

    Roosevelt University, a liberal arts college in the Loop of downtown Chicago perfectly contrasts antiquated and contemporary architecture. Roosevelt’s first venue, constructed in 1889 just in time for the World Fair, is 17 floors of beautiful Art Nouveau structure. The Auditorium Building encompasses ornate railings and scaffolding, topping off with a regal library and a lofty tower overlooking Grant Park. However, because of its age, the Auditorium Building demands constant attention and is inefficient in the frigid Chicago winters and hazy summers.

    Their new building, the Wabash Building, erected in 2012 is just the opposite. Its 32 towering floors of curved glass superintends the Auditorium Building, arriving amongst the structural giants of Chicago. Illustrating the epitome of modern design, this highly efficient, state of the art structure is LEED certified.

    When looking up at the two buildings, old charm vs new-age sleek, the phrase comes to mind: they just don’t make things like they used to. But, there’s necessity behind this. As the global population rises, infrastructure becomes denser, and resources become scarce, engineers concentrate on building smarter. Designing a building that spares no expense—in terms of efficiency in operation and manufacturing of these smarter materials—is pivotal. This all begins in the research and development lab and extends to the manufacturing floor. Materials and processes are developed to allow for more efficiency in both the production of materials and the final construction. Guaranteeing bonds will hold; paint, print, and coatings will stick; seals will persevere; and cleaning processes will clean effectively is crucial to manufacturing a product that will withstand stresses of any structure.

    That is why more and more manufacturers are turning to the Surface Analyst™. This hand-held instrument ensures any surface is ready for effective bonding, coating, cleaning, sealing, printing, or painting. The ability to verify and quantify critical surface processes on the manufacturing floor is the keystone to efficient manufacturing and smarter structures.

    A high-grade window manufacturer, for example, uses the Surface Analyst to verify plasma treatment on vinyl window frames prior to sealing. This guarantees the windows will efficiently heat or cool a structure while also withstanding the elements of rain, wind, and snow. …Read More

    • Likes
    • Comments 0
  • A Beer with Giles Dillingham

    by Emily Walsh April 2017

    In 1987, Giles earned his PhD and moved to Midland, Michigan to begin laboratory work at Dow Chemical.

    The office of Giles Dillingham is unique, eclectic, and full of resources; very much like Giles Dillingham. The corner office is filled with books, antique tools, paintings by his beloved wife, family photos, and of course, a very nice stereo set-up.

    Giles, BTG Labs’ Founder and Chief Scientist, can often be found typing eagerly away at a report while listening to classical music, or seated at the Cherrywood table, collaborating with colleagues.

    One Friday evening, as the Cincinnati sun began to sink, I shared an end of the week beer with Giles in his lovely office to hear the origin story of BTG.

    Emily: So, Giles, you started BTG Labs. Where did it begin?

    Giles: Well, after I finished my PhD at the University of Cincinnati, I had a job waiting for me at Dow Chemical up in Midland, Michigan. And, I worked there for five years in a variety of assignments, mostly in polymer processing and surface properties. Central Research at Dow in the 90’s was an amazing place to work.  It was a very academic environment with amazing scientists from all fields. I spent most of my time in the laboratory. I learned and grew a whole lot.

    E: And, then what? …Read More

    • Likes
    • Comments 0
  • BTG Labs is gearing up for Earth Day; after all, we proudly manufacture an instrument that is valuable in a variety of industries from aerospace, automotive, packaging, and even renewable energy. It’s also pretty eco-friendly.

    The Surface Analyst™ improves the manufacture of renewable energy equipment including solar panels, wind turbines, and electric cars. BTG Labs also works with start-up companies creating brand new technologies for renewable energy. The Surface Analyst measures water contact angle to ensure that surfaces are ready to bond and withstand environmental stresses without failing. Its precision, portability, and ease-of-use allows for its implementation on the manufacturing floor as well as in the field for repairs and maintenance.

    Technicians use it for repairs on wind turbines in the field; solar panel manufacturers value its precision when bonding dissimilar materials to withstand weathering; and electric car companies use it to guarantee paints, bonds, seals, and coatings will stick reliably. New applications for improving renewable energy manufacturing using the Surface Analyst reveal themselves constantly.

    Cleaner Manufacturing 

     

    The Surface Analyst also contributes to conservation in every manufacturing field. Because it offers manufacturers precision and is non-destructive, it cuts down significantly on waste material. The Surface Analyst replaces dyne inks which hold harsh chemicals—including teratogenic chemicals—that are hazardous to the user and the environment. Because of this, dyne cannot be used to test on the actual material and often requires a coupon of the material that has been cut off or specifically designated for testing, off the assembly line. Dyne is also highly subjective and leads to inconsistencies in manufacturing, causing rework and failures, which in turn, means more waste. On the other hand, the Surface Analyst uses highly purified water so it’s completely harmless to both the user, the part, and the environment. A win for both the manufacturer and the planet. …Read More

    • Likes
    • Comments 0
  • BTG Labs will present new data on monitoring laser cleaning with Surface Analyst at ALAC (Advanced Laser Applications Conference) 2017. Taking place in Novi, Michigan from May 9-10, this show brings together the latest in advanced laser technology.

    BTG Labs’ Lead Sales Engineer Lucas Dillingham will present a paper entitled, “A New Technology to Develop, Monitor, and Validate Laser Cleaning Processes” at 10:00am on May 10. Verifying the effect of laser cleaning on metal surfaces has proved challenging, especially on the manufacturing floor. This paper showcases new data on using the Surface Analyst to monitor and optimize laser cleaning processes on metals. The Surface Analyst’s portability allows for its use directly on the manufacturing floor to objectively verify laser cleaning on every part. Knowing the quantitative outcome of a laser cleaning application allows optimization to produce a more reliable final product. The Surface Analyst is the ideal way to verify laser cleaning processes quantifiably and precisely right on the factory floor. …Read More

    • Likes
    • Comments 0